• 趋势分析

    掌控网站性能变化曲线,为网站速度优化提供有力的参考 [详细介绍]

  • 错误分析

    24小时监控数据的报错分析,网站在什么时间访问出错... [详细介绍]

  • 区域分析

    通过区域分析,迅速找出网站在哪些地方速度慢 [详细介绍]

  • ISP分析

    通过ISP分析,迅速找出网站在哪些运营商速度慢 [详细介绍]

  • 监测点分析

    提供监测点数据,以便反向查找问题 [详细介绍]

测速排名 今日 本周 本月

排名 域名 时间
1 www.5189666.com 0.82649s
2 388367.com 0.55690s
3 www.z37266.com 0.37123s
4 D1666.COM 0.45663s
5 www.FALAO11.COM 0.68862s
6 www.sb678.com 0.88779s
7 030350.com 0.39467s
8 www.xpj2070.com 0.83957s
9 www.9199005.com 0.36899s
10 59476.COM 0.64654s

最新测速

域名 类型 时间
www.hg75765.com get 0s
cp971.cc get 0.41000s
cp187.cc get 2.22243s
565bet.com get 0.942723s
4999555.cc get 2.751667s
www.11.sb get 1.573145s
www.y0006.cc get 1.991704s
www.1111sx.com get 1.97414s
esball.us get 0.392375s
www.x26055.vip ping 0.505537s

更新动态 更多

 

http://llbl1.cn | http://www.1ga07.cn | http://m.r4cj1.cn | http://wap.jym5j3k.cn | http://web.w9vsfoj.cn | http://ios.yf7wb9nkz.cn | http://anzhuo.yccpzbsx.cn | http://book.madi96znb.cn | http://news.h5me9.cn

www.2222GF.COM,www.XH6888.COM测速|网站测速|网站速度测试

总之,自从1991年首次进入市场以来,锂离子电池就彻底改变了我们的生活。诺奖官网表示,“它们奠定了无线、无化石燃料社会的基础,极大地推动了人类的发展。”

总之,自从1991年首次进入市场以来,锂离子电池就彻底改变了我们的生活。诺奖官网表示,“它们奠定了无线、无化石燃料社会的基础,极大地推动了人类的发展。”

1991年,两人合作发明的锂离子电池正式上市销售,它轻巧耐用、安全可靠,在性能下降前可充放电数百次。

“电池的研究是一个非常有活力、引人入胜的研究领域。”金钟透露,科学家们正在开发下一代更高性能的锂离子电池,比如全固态、柔性锂离子电池等,也在研究其他的新型电池,包括锂硫电池、多价离子电池、金属空气电池和液流电池等,大家认为这些新型电池有希望在很多不同的应用场景发挥非常重要的作用。

20世纪70年代的石油危机催生了对新能源储能的需求,也推动了电池研发,为未来锂离子电池打下基础。当时正致力于超导体研发的惠廷厄姆创新地使用二硫化钛作为阴极材料存储锂离子,以金属锂作为部分阳极材料,制成了首个新型电池。但由于金属锂化学特性过于活泼,这种电池具有易爆炸的潜在危险。

当获奖后接受采访回答研究初衷时,吉野彰说自己完全是“好奇心驱使”,研究是一个漫长的过程,“我只不过是嗅出了潮流发展的方向,你可以说我的嗅觉很好”。

当获奖后接受采访回答研究初衷时,吉野彰说自己完全是“好奇心驱使”,研究是一个漫长的过程,“我只不过是嗅出了潮流发展的方向,你可以说我的嗅觉很好”。

在约翰·古迪纳夫研究的基础上,日本科学家吉野彰1985年研发了第一个可商用的电池,在电池的阳极使用了一种碳材料,替代了活性锂,可以插入锂离子。结果制成了重量轻、坚固耐用的电池,在其性能下降之前可以充电数百次。锂离子电池的优点在于,它们不是基于分解电极的化学反应,而是基于锂离子在阳极和阴极之间来回流动。

“这三位科学家的研究,从提出锂离子电池的原型概念开始,到实用化电极材料的筛选优化,再到锂离子电池在商业化初期的构架和工艺设计,实现了从基础研究到大规模应用的重要突破,获奖是实至名归的,也是大家期待已久的。”金钟告诉记者,他们对锂离子电池的科学原理的研究,具有很重要的学术价值,对现在研发新型电池仍有非常重要的指导作用。

在20世纪70年代,世界范围内爆发了石油危机,能源研究开始兴起。此时斯坦利·惠廷厄姆正在研究无化石燃料的能源技术。他和同事发现了锂离子可以在电极间来回穿梭,具备了充电能力,并能在室温下工作。在研究超导体时,他发现了一种能量极其丰富的材料,由二硫化钛制成,在分子水平上具有可以容纳(嵌入)锂离子的空间。他将这种材料放在锂离子电池的阴极,阳极部分则由金属锂制成,成功研制出了锂离子电池。可是,金属锂具有强烈的反应性,电池很容易爆炸,无法使用。

本届诺贝尔化学奖花落锂离子电池可谓众望所归。早在20世纪70、80年代,三位获奖研究者就确立了现代锂离子电池的基本框架,20世纪90年代起,锂离子电池开始大规模进入市场,如今已几乎无处不在。

最年长获奖者,97岁科学家创纪录

“可以说这三位科学家是锂离子电池领域的开拓者、先驱者,我看过他们的很多研究论文,尤其是古迪纳夫先生,他以97岁高龄获奖,却仍然是一位走在学术前沿的高产学者。我在一些国际储能学术会议上也听过他们的学术报告。”南京大学化学化工学院教授、博士生导师金钟,主要研究方向是能源转换与存储材料的结构设计、物理化学机制研究和器件应用。2008-2014年曾先后在美国莱斯大学和麻省理工学院进行博士后研究。

在远隔重洋的日本,吉野彰研发的阳极材料和古迪纳夫的阴极材料形成“天作之合”。吉野彰发现,石油焦炭可作为更好的阳极,但因找不到合适的阴极材料而苦恼。直到他读到古迪纳夫的论文,才兴奋地说“他的发现给了我所需要的一切”。至此,以钴酸锂为阴极,以碳材料为阳极的锂离子电池诞生了。

据了解,电池三要素分别是正极、负极和电解质。当负极发生氧化反应,放出电子,而在正极同时发生还原反应,接收来自负极的电子,产生了电流。因此,如果两个电极能够释放和接收较多电子时,发电效率将会提高。想要提高电池性能,就要从这三者入手。